
Subverting the Windows
Kernel

By Juan Sacco <jsacco@exploitpack.com>

Summary of the
presentation

● Fundamentals
● Software development & Rootkits
● Windows Kernel Exploitation
● Protections

Why is this important?

Knowledge Prerequisites

● What is an overflow and their types
● DEP Bypass
● ASLR
● Heap management
● Windows Internals
● C/C++ & Debugging
● EIP Control? No! Flow control.

Fundamentals a quick re-cap:

Fundamentals (Basic software driver)

Fundamentals (IO Packets)

entals

Fundamentals (IOCTLs)

Software Drivers & Rootkits development

DEMO

Exploit classes (mixed) for Windows Kernel

- Use-after-free / dangling pointers (pool memory): Ref-count mistakes leave stale pointers.

- Race conditions / TOCTOU (including double-fetch): unsynchronized access to data shared between user mode and kernel
or across IRP paths.

- Boundary issues: integer over/underflow on size calculations; stack/pool buffer overflows; out-of-bounds reads/writes.

- Uninitialized or info-leak bugs: returning kernel memory that wasn’t properly zeroed can leak pointers/ASLR seeds.

- Access-control/logic issues: missing ACCESS_MASK checks; overly powerful IOCTLs; trusting user pointers/handles without
validation.

- Write Access / Read Access (virtual or physical)

Arbitrary Write:

What can you do?

What else can you do? >:)

Malware is already doing it!

Protections in Kernel
● VBS Virtualized Based Security + HVCI Hyper Visor Protected Code Integrity (a.k.a. “Memory integrity”) isolate and

enforce code-integrity policy for kernel code; enabled by default on many Windows 11 devices and can be toggled in
Windows Security.

● Hardware-enforced Stack Protection / CET (Control-Flow Enforcement Technology) shadow stack (kernel-mode)
“hardens” return addresses against ROP in kernel.The OS allocates and manages a shadow stack for each thread and
basically compares the RET. As with Control Flow it has to be precompiled

● Driver signing & PatchGuard (KPP Kernel Patching Protection) at random intervals, every few mins. Checks the cache
known-good copies or checksums of critical structures, CFG (Control Flow Guard “prevents” use-after-free), KASLR (Kernel
Adress Space Layout Randomization), SMEP (Supervisor Mode Execution Prevention (SMEP) is a security feature that helps
prevent unintended execution of user-space code in kernel mode. As with DEP it can be bypassed using ROP) SMAP
(Supervisor Mode Access Prevention) prevents read/write. RFLAGS register with flag (AC) can be disabled from user mode!
And kernel pool cookies, bypassed by doing info leak (get the cookie value). collectively raise the bar for memory-corruption
abuse. (See Microsoft’s kernel/driver security guidance for an overview.)

Exploiting the Windows Kernel

IOCTLPlus

https://github.com/jthuraisamy/ioctlpus

:-(

What do we need?

Driver Hooking IOCTLs in Kernel

IOCTL++

IOCTL++ can be used to make DeviceIoControl
requests with arbitrary inputs. The original tool has been
improved with a driver hooker allowing the user to capture
the data and config of IOCTLs of the target application
during runtime.

Here is an example of an ZwTerminationProcess triggered in
a sample vulnerable driver:

https://github.com/jsacco/ioctlplusplus/

Download IOCTL++ from Github:

Bonus! SEDriver64.sys from SystemExplorer. Sorry! ;-(

Analysis with IOCTLance!

Remix discovery using Driver buddy (IDA Pro plugin)

IOCTL
Read/Write Function

What do we have here?
1. No Probe for read (direct access from Usermode!) Just use it like it is!

2. Heap overflow

What the code is missing!

What do we need? The way to LPE.

1. IOCTL Codes (0x22E008), and Device (\.\\ListFileDrv)
2. Input buffer: 8 OutputBuffer: 1044
3. Vulnerable function: memmove

4. Windows API NtQuerySystemInformation with
SystemExtendedHandleInformation to disclose a SYSTEM TOKEN address.

Note: Driver base address may be disclosed by SystemModuleInformation
class

Goal: Get the token

1. NtQuerySystemInformation KASLR infoleak to disclose
Token address

2. Map the kernel page with the Token to user-mode using
the vulnerability

3. Overwrite the privileges bitfield to gain
SeDebugPrivilege

4. Spawn a SYSTEM shell with the Token from System 4

Questions?

Contact me at <jsacco@exploitpack.com>

https://github.com/jsacco/ioctlplusplus/

GITHub link for the IOCTL++ or QRCode:

